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Abstract
Early detection is a crucial goal in the study of Alzheimer’s Disease (AD). In this work,
we describe several techniques to boost the performance of 3D convolutional neural net-
works trained to detect AD using structural brain MRI scans. Specifically, we provide
evidence that (1) instance normalization outperforms batch normalization, (2) early spatial
downsampling negatively affects performance, (3) widening the model brings consistent
gains while increasing the depth does not, and (4) incorporating age information yields
moderate improvement. Together, these insights yield an increment of approximately
14% in test accuracy over existing models when distinguishing between patients with AD,
mild cognitive impairment, and controls in the ADNI dataset. Similar performance is
achieved on an independent dataset. We make our code and models publicly available at
https://github.com/NYUMedML/CNN_design_for_AD.

1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia, and the 6th leading cause of
death in the U.S. (National Center for Health Statistics (2017)). Unfortunately, all clinical
trials to reverse AD have failed so far (Servick (2019)). It is hypothesized that clinical trials
need to target patients at earlier stages before significant brain atrophies. But diagnosing
the disease at an early stage is challenging. The current method for early detection relies
on PET imaging, which is invasive and very costly. Various studies show that AD-related
brain degeneration begins years before the clinical onset of symptoms (Jagust (2018)). This
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suggests that early detection of AD might be possible from standard structural brain imaging
scans. Unfortunately, both clinical and also research-grade detection accuracies remain low.

In this paper we focus on learning to differentiate between cognitively normal aging (CN),
mild cognitive impairment (MCI), and Alzheimer’s disease (AD), using structural brain MRI
(T1-weighted scans). We propose a 3D convolutional neural network (CNN) architecture
that achieves state-of-the-art performance for this task. The key novel components of
the architecture are (1) instance normalization, an alternative to batch normalization
introduced originally in the context of style transfer (Ulyanov et al. (2016); Huang and
Belongie (2017)), (2) the use of small-sized kernels in the first layer to avoid downsampling,
(3) wide architectures with large numbers of filters and relatively few layers, (4) providing
the age of the patient to the network through an embedding inspired by a recent technique
from natural language processing (Vaswani et al. (2017)).

Section 3 describes the data and our preprocessing scheme. Our methodology is then
presented in Section 4. In Section 5 we report ablation experiments on the test set to isolate
the effect of the different elements in our model, as well as additional analysis of the results.
Code to reproduce our main results is publicly available at https://github.com/NYUMedML/
CNN_design_for_AD.

2. Related Work

An important task in automatic diagnostics of AD is to distinguish patients with different
degrees of mental impairment from MRI scans. Initial works applied simple classifiers such
as support vector machines on features obtained from volumetric measurements of the
hippocampus (Gerardin et al. (2009)) and other brain areas (Plant et al. (2010)).

More recently, several deep-learning approaches have been applied to this task. Gupta
et al. (2013) used pretraining based on a sparse autoencoder to perform classification on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (ADNI). Hon and Khan
(2017) applied state-of-the-art architectures such as VGG (Simonyan and Zisserman (2014))
and Inception Net (Szegedy et al. (2015)) on the OASIS dataset (Marcus et al. (2010)),
selecting the most informative slices in the 3D scans based on image entropy. Valliani and
Soni (2017), showed that a ResNet (He et al. (2016)) pretrained on ImageNet (Deng et al.
(2009)) outperformed a baseline 2D CNN. Hosseini-Asl et al. (2016) evaluated a 3D CNN
architecture on ADNI and data from the CADDementia challenge (Bron et al. (2015)).
Cheng et al. (2017) proposed a more computationally-efficient approach based on large 3D
patches processed by individual CNNs, which are then combined by an additional CNN to
produce the output. Lian et al. (2018) proposed a related hierarchical CNN architecture that
automatically identifies significant patches. Siamese networks were applied by Khvostikov
et al. (2018) to distinguish regions of interest around the hippocampus fusing data from
multiple imaging modalities.

As described in a recent survey paper, Wen et al. (2019), many existing works suffer
from data leakage due to flawed data splits, biased transfer learning, or the absence of an
independent test set. The authors also report that, in the absence of data leakage, CNNs
achieve an accuracy of 72-86% when distinguishing between AD and healthy controls. In
a similar spirit, Fung et al. (2019) studied the effect of different data-splitting strategies
on classification accuracy. A significant drop in test accuracy (from 84% to 52% for the
three-class classification problem considered in the present work) was reported when there
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was no patient overlap between the training and test sets. Bäckström et al. (2018) also
studied the effect of splitting strategies and report similar results for two-way classification.

3. Datasets and Preprocessing

3.1. Datasets

For this study, we use T1-weighted structural MRI scans from the ADNI dataset (Mueller
et al. (2005)), which have undergone specific image preprocessing steps including multiplanar
reconstruction (MPR), Gradwarp, B1 non-uniformity correction, and N3 intensity normal-
ization (ADNI (2008)). In total, we used over 3000 preprocessed scans. According to the
ADNI procedures manuals, labels in the ADNI dataset are extracted based on the scores
obtained on memory tasks– corrected by education level– and other criteria, some of which
are subjective (ADNI (2008)). The labels are AD (mildly demented patients diagnosed with
AD), MCI (mildly cognitively-impaired patients in the prodromal phase of AD) and CN
(elderly control participants).

3.2. Data preprocessing

Most previous studies use packages such as FSL, Statistical Parametric Mapping (SPM),
and FreeSurfer (Fischl (2012)) to preprocess the data. FSL provides brain extraction and
tissue segmentation functionality, while SPM realigns, spatially normalizes, and smooths the
scans. FreeSurfer provides a preprocessing stream that includes skull stripping, segmentation,
and nonlinear registration. For this study, we used the Clinica software platform developed
by ARAMIS Lab, which supports FSL, SPM and FreeSurfer. We first split patients into
training, validation and test sets. Then we use Clinica to register the scans to a Dartel
template computed exclusively from the training data (Ashburner (2007)), and normalize
them to the Montreal Neurological Institute (MNI) coordinate space (Evans et al. (1993)).
The validation and test data are not used to compute any templates in order to avoid data
leakage. The input to the Clinica software is the ADNI scans converted to BIDS format. The
output dimensions are 121 × 145 × 121 voxels along sagittal, coronal and axial dimensions
respectively. Due to preprocessing and registration errors, the final number of scans in our
dataset is 2702.

The subjects in the dataset are split between training (70%), validation (15%) and test
(15%) sets. As mentioned in the previous section, the split is carried out before preprocessing
to avoid any data leakage. Data leakage resulting from using the same subjects in the training
and test sets has been shown to artificially improve model performance by a large margin
(Bäckström et al. (2018); Fung et al. (2019)). Table 1 shows the demographics of the patients
in the training, validation, and test sets.

4. Methodology

Figure 1 shows a scatterplot of the values of two popular hand-crafted features associated
to AD diagnostics: normalized hippocampus volumes and entorhinal volumes (Frisoni et al.
(1999); Leandrou et al. (2018)). The features are informative (AD patients tend to have smaller
volumes with respect to healthy controls), but they do not enable accurate classification due
to the significant overlap between the three classes. This motivates learning discriminative

3



On the design of CNN for automatic detection of Alzheimer’s disease

Split Class Num. subjects Num. Scans Mean Age (std)

Train
CN 140 567 77.0 (5.4)
MCI 248 840 75.9 (7.3)
AD 193 527 76.7 (7.4)

Val
CN 33 126 77.2 (5.6)
MCI 39 138 73.3 (7.2)
AD 41 124 76.1 (8.3)

Test
CN 24 105 79.0 (6.1)
MCI 43 140 76.7 (6.5)
AD 45 135 76.4 (5.1)

Table 1: Demographics of our training, validation and test sets after preprocessing.

Figure 1: Visualization intracranial normalized hippocampus and entorhinal volumes of AD,
MCI, and CN subjects. Note that there is significant overlap between the three
classes.

features automatically. Our proposed methodology achieves this using a deep convolutional
neural network, inspired by their success in computer vision. However, it is worth emphasizing
that our dataset of interest is very different to the datasets of natural images typically used
to benchmark computer vision tasks. In our case, all scans are registered and have very
similar structure. In addition, the number of examples is usually orders of magnitude
smaller. Therefore, we need to design architectures capable of learning subtle differences
from relatively small datasets.

4.1. Proposed model

Our proposed architecture is a 3D CNN model, composed of convolutional, normalization,
activation and max-pooling layers. The architecture is described in more detail in Table 2.
In this section, we outline several design choices that significantly boost the performance of
the network for the task of differentiating between CN, AD, and MCI patients.

Instance normalization. Batch normalization, introduced by Ioffe and Szegedy (2015),
has become one of the standard techniques to ease training of deep feed-forward networks. In
our proposed model, however, we apply instance normalization, a technique introduced in the
context of style transfer (Ulyanov et al. (2016); Huang and Belongie (2017)). In Section 5.3.1,
we show that applying instance normalization consistently outperforms batch normalization
for our task of interest.

Small-sized kernels. In contrast to most standard architectures for image classification,
we use small-sized kernels in the first convolutional layer to prevent early spatial downsampling.
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Block Layer Type Output size

Inputs 96× 96× 96

1

Conv3D k1-c4·f -p0-s1-d1 96× 96× 96
InstanceNorm3D
ReLU
MaxPool3D k3-s2 47× 47× 47

2

Conv3D k3-c32·f -p0-s1-d2 43× 43× 43
InstanceNorm3D
ReLU
MaxPool3D k3-s2 21× 21× 21

3

Conv3D k5-c64·f -p2-s1-d2 17× 17× 17
InstanceNorm3D
ReLU
MaxPool3D k3-s2 8× 8× 8

4

Conv3D k3-c64·f -p1-s1-d2 6× 6× 6
InstanceNorm3D
ReLU
MaxPool3D k5-s2 5× 5× 5

FC1 1024
FC2 3
Softmax 3

Table 2: The backbone architecture. k = kernel size, c = number of channels as a multiple
of the widening factor f , p = padding size, s = stride and d = dilation. We report
results for f equal to 1, 2, 4, and 8 in Section 5. The age encoding, if used, is
forward propagated through two linear layers with layer normalization before being
added to the output of FC1, see Table 6 in the Appendix for details.

For instance, ResNet and AlexNet use relatively large kernel sizes and strides in their first
layer, which dramatically reduce the spatial dimension of their inputs. This accelerates
the computation and is not usually detrimental in the case of natural-image classification
tasks. However, for our task of interest, early downsampling results in significant loss of
performance, as we show in Section 5.3.2.

Wider network. In our architecture design we favor a wider architecture that is not too
deep. In Section 5.3.3, we find that increasing the depth of the model only brings marginal
gains, whereas widening the architecture improves performance significantly.

Age encoding. Brains typically shrink to some degree in healthy aging (Peters (2006)).
This might confuse the model since Alzheimer’s disease may have a similar effect (Van Hoesen
et al. (1991)). A simple way to incorporate age in our model is to concatenate the normalized
age of the patient to the output of the convolutional layers. However, this seems to result
in worse performance. In order to better integrate age information, we encode each age
value into a vector and combine the vector with the output of the convolutional layers. See
Appendix A for further details.
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Method Accuracy Balanced Acc Micro-AUC Macro-AUC

ResNet-18? 50.8% - - -
ResNet-18 pretrained? 56.8% - - -
ResNet-18 3D� 52.4± 1.8% 53.1% - -
ResNet-18 3D 50.1± 1.1% 51.3± 1.0% 71.2± 0.4% 72.4± 0.7%
AlexNet 3D 57.2± 0.5% 56.2± 0.8% 75.1± 0.4% 74.2± 0.5%
proposed• 66.9± 1.2% 67.9± 1.1% 82.0± 0.7% 78.5± 0.7%
proposed• + Age 68.2± 1.1% 70.0± 0.8% 82.0± 0.2% 80.0± 0.5%

? Results on 2D ResNets initialized with or without pretrained weights on Imagenet reported by
Valliani and Soni (2017).

� 3D ResNet with mild modifications, see Fung et al. (2019) for details. The balanced accuracy is
computed using the confusion matrix in the paper.

• The backbone model showed in Table 2 with a widening factor of 8.

Table 3: Comparison of the published models to our best proposed models. + Age means
that the model incorporates age encodings.

Figure 2: ROC curves on the validation set (left) and test set (right). Differentiating CN
or AD from all other classes results in high AUCs while detecting MCI remains a
difficult task.

5. Experiments and Results

In this section, we present and interpret the results of our study, which demonstrate the
effectiveness of the techniques described in Section 4.

5.1. Description of computational experiments

We choose AlexNet and ResNet as baseline 3D CNNs since they are popular in computer
vision as well as for our task. Unsurprisingly, given the size of the dataset, all architectures,
including ResNet and AlexNet, are able to fit the training set with high balanced accuracy,
while the generalization ability varies. We perform data augmentation via Gaussian blurring
with σ uniformly chosen from 0 to 1.5, and random cropping of size 96 × 96 × 96. We
set the batch size to 4 (for memory considerations) and the learning rate to 0.01. We use
stochastic gradient descent with momentum equal to 0.9. We use the same settings for
AlexNet and ResNet, except for the batch size which is set to 16 since these architectures
use batch normalization. After training, the models with the lowest validation loss are saved
and evaluated on the test set to obtain the results reported in Table 3. We compute the
confidence intervals using bootstrapping.
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5.2. Comparison to other methods

Our primary metric in this work is standard classification accuracy (Acc). As the test set
is not necessarily balanced, we also use balanced classification accuracy (Bal-Acc) which
is calculated as the average of the recall of each class. We also compute area under the
ROC curves (AUCs), which are widely used for measuring the predictive accuracy of binary
classification problems. This metric indicates the relationship between the true positive rate
and false positive rate when the classification threshold varies. As AUC can only be computed
for binary classification, we compute AUCs for all three binary problems of distinguishing
between one of the categories and the rest. We also calculate micro and macro averages,
denoted as Micro-AUC and Macro-AUC respectively.

Table 3 summarizes our results. Our proposed model significantly outperforms previously
reported results1, as well as the baseline architectures. Incorporating age through the
proposed encoding improves performance moderately. We show the ROC curves obtained
on the validation and test set in Figure 2. The model achieves around 90% AUC when
distinguishing CN or AD from the other two classes, and 60− 65% when distinguishing MCI
from the other two classes.

5.3. Ablation studies

In this section, we perform ablation studies on the techniques described in Section 4 to
isolate their individual contributions to the accuracy of the proposed model. The studies
were performed on the test set.

5.3.1. Instance normalization vs batch normalization

We compare batch normalization (BN) and instance normalization (IN) on the backbone
architecture using different widening factors and on ResNet-18. The results are in Table 4.
More comprehensive evaluations on different widening factors are presented in Table 8 of
Appendix B. Models with IN layers perform consistently better than models with BN layers.

Method Accuracy balanced Acc Micro-AUC Macro-AUC

×4 with IN 63.2± 1.0% 63.3± 0.9% 80.5± 0.5% 77.0± 0.7%
×4 with BN 61.8± 1.1% 62.2± 1.1% 77.0± 0.5% 73.0± 0.6%
×8 with IN 66.9± 1.2% 67.9± 1.1% 82.0± 0.7% 78.5± 0.7%
×8 with BN 58.8± 0.9% 60.7± 0.7% 75.9± 0.7% 73.1± 0.8%
ResNet-18 with IN 52.3± 0.8% 52.7± 1.1% 74.1± 0.7% 73.1± 0.9%
ResNet-18 with BN 50.1± 1.1% 51.3± 1.0% 71.2± 0.4% 72.4± 0.7%

Table 4: Comparison of batch normalization (BN) and instance normalization (IN) layers
on the backbone architecture with widening factor of 4 and 8 and on ResNet-18.
See also Table 8 for results with other widening factors. Instance normalization
outperforms batch normalization in all cases.

1. Some of the results in the literature use different data splits. However, we also report 3D the two most
popular models (ResNet-18 and AlexNet) trained using the same split as the proposed model.
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5.3.2. Early spatial downsampling

Here we study how the kernel size of the first convolutional layer affects the final classification
performance. We compare original kernel sizes 1× 1× 1 with stride 1, 3× 3× 3 with stride 2,
and 7× 7× 7 with stride 4. The results are summarized in Figure 3. The smallest kernel has
the best performance. This is a possible explanation for the inferior performance of ResNet
and AlexNet for our task. We further check this hypothesis for ResNet, the results show
that reducing kernel size for the initial layer is effective for ResNet as well (see details in
Appendix C).

Figure 3: Comparison of the performances of different first layer kernel sizes for the backbone
architecture in Table 2. Larger kernel sizes in the first layer result in worse
performance.

5.3.3. Wider or deeper model?

In this section we compare the effect of varying width or depth on classification accuracy.
The left graph in Figure 4 shows that widening the network architecture leads to better
classification performance up until a certain point. This finding is in line with results reported
for the ResNet by Zagoruyko and Komodakis (2016). We increase the depth of our backbone
network by adding convolutional blocks (convolutional layers + instance normalization +
ReLU activation). It should be noted that the size of the representation output from the
final convolutional block might decrease when the network becomes deeper. To control for
the effects of the representation size when making the architecture deeper, convolutional
layers in each block are set to have kernel size of 3 × 3 × 3, stride of 1 and padding of 1.
Increasing depth only achieves small gains in accuracy. We also observe that deeper networks
are often slower and more difficult to train when compared to wider networks.

5.3.4. Impact of dataset size

In Figure 5, we report the performance of the proposed model for datasets of different sizes
(obtained by randomly subsampling the data). We observe that increasing the size of the
dataset results in better performance in all evaluation metrics. Given that the model is
trained on a very small dataset compared to regular computer-vision tasks, more data may
be needed to exhaust the representation ability of the models.
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Width Depth

Figure 4: Performance for different widening factors (left) and numbers of added blocks
(right) for backbone architecture in Table 2. Wider architectures consistently
achieve better performance up until a widening factor of x4. Deeper networks only
achieve marginal improvement.

Figure 5: Performance of the proposed model evaluated using different subsampling rates.
The trend is clear: increasing dataset size improves performance across all evalua-
tion metrics.

5.4. Validation with independent dataset

We test the generalization capacity of our model on a completely separate dataset, obtained
from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) (Ellis
et al. (2009)). We follow the same preprocessing procedures as for the ADNI validation and
test set (described in Section 3), being careful to avoid any data leakage. After preprocessing,
we obtain 783 CN scans from 461 subjects with average age 73.5, 150 MCI scans from
113 subjects with average age 76.2, and 134 AD scans from 95 subjects with average age
75.4. The results are shown in Table 5. We apply our proposed architecture without age
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information, since this information may not be readily available for different datasets. The
model achieves a similar performance on this independent dataset as on the ADNI data,
which demonstrates that the features learned by the network generalize effectively.

Method Accuracy Balanced Acc Micro-AUC Macro-AUC

proposed on ADNI 66.9± 1.2% 67.9± 1.1% 82.0± 0.7% 78.5± 0.7%
proposed on AIBL 63.6± 0.7% 65.7± 1.1% 90.0± 0.6% 82.1± 0.7%

Table 5: Comparison of the performance of the proposed model on the ADNI and AIBL
datasets.

6. Analysis

6.1. Analysis of wrongly-classified subjects

We analyze the wrongly-classified validation examples in Figure 6. Mini-Mental State Exam
(MMSE) scores (with value ranges from 0 to 30) are widely used tools for detecting cognitive
impairment, assessing severity, and monitoring cognitive changes over time. Lower scores
often mean more cognitive impairment. The model’s output after the softmax layer (logits)
can be viewed as the confidence of the model in predicting a class. The trend in the figure
shows that for higher MMSE scores the model becomes more confident in predicting CN,
and less confident in predicting AD. Since the criteria to assign labels are subjective, and
the boundary between MCI and the other two classes is not always clear, it is possible that
some of the classification errors are due to noise in the labels.

Figure 6: The Mini-Mental State Exam (MMSE) scores and corresponding logits of the
predicted class for wrongly-classified validation examples.

6.2. Opening the black box

In order to visualize the features learned by the model, we compute saliency maps consisting
of the magnitude of the gradient of the target class score with respect to the input (Simonyan
et al. (2013)). Figure 7 shows examples of these saliency maps for randomly selected scans in
the validation set belonging to each class. It also shows aggregated maps that combine saliency
maps from all scans in the validation set. These results reveal some interesting aspects of
the proposed model: the model focuses on gray-matter regions around the hippocampus and
the ventricles, which is consistent with existing biomarkers (Risacher and Saykin (2013)), as
well as on some additional regions. A detailed study of these regions lies beyond the scope of
this work, but is an intriguing direction for future research.
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Axial 50th Axial 26th Coronal 56th Sagittal 26th

Agg.

CN

MCI

AD

Figure 7: Visualization of class saliency maps (slices) obtained by computing the magnitude
of the gradient of the learned map associated to each class with respect to the
input (for each patient we compute the gradient with respect to their true class).
The top row shows a aggregated plot of all saliency maps in the validation set for
three slices. The bottom rows show saliency maps for examples of patients in each
class superposed on the corresponding registered brain scan and smoothed by a
Gaussian kernel with σ = 0.8.

7. Conclusion

In this paper, we develop a novel 3D CNN architecture to perform three-way classification
between patients with Alzheimer’s disease, patients with mild cognitive impairment, and
healthy controls. Our architecture combines different elements (instance normalization, wider
layers, and an encoding of the patient’s age) to achieve a significant gain in classification
accuracy, demonstrated on completely held-out data and on an independent dataset.
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Appendix A. Age encodings

To compute the age encoding vector, we first fix the age values range from 0 to 120 years
old, and round all possible age values to 0.5 decimal places. In total, we get 240 possible age
values. Inspired by the positional encoding in the transformer model (Vaswani et al. (2017)),
we use sinusoidal functions to implement the encoding. We define AE(age) ∈ Rdmodel to be
the age encoding function defined as:

AE(age,2i) = sin(age/100002i/dmodel)

AE(age,2i+1) = cos(age/100002i/dmodel)

where age is one of the 240 possible age values,and i = 0, 1, 2, . . . , dmodel/2−1 is the dimension
and dmodel is the size of the encodings. We further transform the age encodings using a few
fully connected layers to match the scales and sizes with the visual representation. The
architecture for the transformation is showed in Table 6.

Layer Output size

Linear 512
LayerNorm 512
Linear 1024

Table 6: The age encoder architecture

We compare this method with a simple baseline. In the baseline, we directly concatenate
normalized age (with range from 0 to 1) to the learned representation obtained from the
convolutional layers. The results are in Table 7. Our proposed encoding results in improved
performance, whereas the baseline encoding results in worse performance.

Method Accuracy Balanced Acc Micro-AUC Macro-AUC

No age information 66.9± 1.2% 67.9± 1.1% 82.0± 0.7% 78.5± 0.7%
Proposed age encoding 68.2± 1.1% 70.0± 0.8% 82.0± 0.2% 80.0± 0.5%
Baseline age encoding 61.5± 1.4% 62.6± 1.0% 78.6± 1.2% 78.3± 1.1%

Table 7: Comparison of different ways of incorporating the age information using the proposed
architecture.

Appendix B. Instance Normalization vs Batch Normalization

In Table 8, we present the complete results of comparing Instance Normalization (IN) and
Batch Normalization (BN) on our backbone architecture with various widening factors. IN
consistently outperforms BN for all architectures.
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Method Accuracy balanced Acc Micro-AUC Macro-AUC

×1 with IN 56.4± 1.4% 54.8± 1.2% 74.2± 0.8% 75.6± 0.9%
×1 with BN 54.2± 1.2% 53.3± 0.8% 74.1± 0.7% 73.2± 0.9%
×2 with IN 58.4± 1.7% 57.8± 1.7% 77.2± 0.8% 76.6± 0.9%
×2 with BN 57.1± 0.7% 55.6± 0.8% 74.8± 0.6% 73.6± 0.6%
×4 with IN 63.2± 1.0% 63.3± 0.9% 80.5± 0.5% 77.0± 0.7%
×4 with BN 61.8± 1.1% 62.2± 1.1% 77.0± 0.5% 73.0± 0.6%
×8 with IN 66.9± 1.2% 67.9± 1.1% 82.0± 0.7% 78.5± 0.7%
×8 with BN 58.8± 0.9% 60.7± 0.7% 75.9± 0.7% 73.1± 0.8%
ResNet-18 with IN 52.3± 0.8% 52.7± 1.1% 74.1± 0.7% 73.1± 0.9%
ResNet-18 with BN 50.1± 1.1% 51.3± 1.0% 71.2± 0.4% 72.4± 0.7%

Table 8: Comparison of batch normalization (BN) and instance normalization (IN) layers on
the backbone architecture with different widening factors as well as on ResNet-18,
instance normalization outperforms batch normalization in all cases.

Figure 8: Performance of different first layer kernel sizes for a ResNet-18 with IN. Method
(a) modifying the kernel into 3× 3× 3, stride 1. In method (b), we further add a
1× 1× 1 convolutional block on the top of the model from method (a).

Appendix C. Early spatial downsampling

Figure 8 shows results for ResNet when for different kernel sizes of the first convolutional
layer. We modify the architecture of a ResNet-18 with instance normalization in the following
way: (a) we reduce the size of the first convolution from 7× 7× 7 with stride 2 into 3× 3× 3
with stride 1, (b) we further add a 1× 1× 1 convolutional block on the top (right after the
input), the results are showed in Figure 8. These results demonstrate that reducing filter size
in the first convolutional layer yields performance improvements for the ResNet as well. For
a ResNet-18 with batch normalization, performance also improves, although less markedly.
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